Generalized belief propagation for approximate inference in hybrid Bayesian networks

نویسندگان

  • Tom Heskes
  • Onno Zoeter
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Inference Algorithms for Hybrid Bayesian Networks with Discrete Constraints

In this paper, we consider Hybrid Mixed Networks (HMN) which are Hybrid Bayesian Networks that allow discrete deterministic information to be modeled explicitly in the form of constraints. We present two approximate inference algorithms for HMNs that integrate and adjust well known algorithmic principles such as Generalized Belief Propagation, Rao-Blackwellised Importance Sampling and Constrain...

متن کامل

Modeling Transportation Routines using Hybrid Dynamic Mixed Networks

This paper describes a general framework called Hybrid Dynamic Mixed Networks (HDMNs) which are Hybrid Dynamic Bayesian Networks that allow representation of discrete deterministic information in the form of constraints. We propose approximate inference algorithms that integrate and adjust well known algorithmic principles such as Generalized Belief Propagation, Rao-Blackwellised Particle Filte...

متن کامل

Iterative Algorithms for Graphical Models 1

Probabilistic inference in Bayesian networks, and even reasoning within error bounds are known to be NP-hard problems. Our research focuses on investigating approximate message-passing algorithms inspired by Pearl’s belief propagation algorithm and by variable elimination. We study the advantages of bounded inference provided by anytime schemes such as Mini-Clustering (MC), and combine them wit...

متن کامل

Expectation Propagation for approximate Bayesian inference

This paper presents a new deterministic approximation technique in Bayesian networks. This method, “Expectation Propagation,” unifies two previous techniques: assumed-density filtering, an extension of the Kalman filter, and loopy belief propagation, an extension of belief propagation in Bayesian networks. Loopy belief propagation, because it propagates exact belief states, is useful for a limi...

متن کامل

Performing Bayesian Risk Aggregation using Discrete Approximation Algorithms with Graph Factorization

Risk aggregation is a popular method used to estimate the sum of a collection of financial assets or events, where each asset or event is modelled as a random variable. Applications, in the financial services industry, include insurance, operational risk, stress testing, and sensitivity analysis, but the problem is widely encountered in many other application domains. This thesis has contribute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003